index

⚠️ This module is not part of this project and is only included for reference.
It is either part of the 1lab, the cubical library, or a built-in Agda module.

<!--
```agda
open import 1Lab.Path.Reasoning

open import Algebra.Group.Cat.Base
open import Algebra.Group.Homotopy
open import Algebra.Group

open import Cat.Functor.Equivalence
open import Cat.Functor.Properties
open import Cat.Morphism
open import Cat.Prelude

open import Data.Int

open import Homotopy.Space.Delooping
open import Homotopy.Connectedness
open import Homotopy.Space.Circle
open import Homotopy.Conjugation

open is-group-hom
open Precategory
open Functor
```
-->

```agda
module Algebra.Group.Concrete where
```

<!--
```agda
private variable
   ℓ' : Level
```
-->

# Concrete groups {defines="concrete-group"}

In homotopy type theory, we can give an alternative definition of [[groups]]:
they are the [[pointed|pointed type]], [[connected]] [[groupoids]].
The idea is that those groupoids contain exactly the same information as their
[[fundamental group]].

Such groups are dubbed **concrete**, because they represent the groups of symmetries
of a given object (the base point); by opposition, "algebraic" `Group`{.Agda}s are
called **abstract**.

```agda
record ConcreteGroup  : Type (lsuc ) where
  no-eta-equality
  constructor concrete-group
  field
    B                : Type∙ 
    has-is-connected : is-connected∙ B
    has-is-groupoid  : is-groupoid  B 

  pt :  B 
  pt = B .snd
```

Given a concrete group $G$, the underlying pointed type is denoted $\B{G}$, by analogy
with the [[delooping]] of an abstract group; note that, here, the delooping *is* the
chosen representation of $G$, so `B`{.Agda} is just a record field.
We write $\point{G}$ for the base point.

Concrete groups are pointed connected types, so they enjoy the following elimination
principle, which will be useful later:

```agda
  B-elim-contr : {P :  B   Type ℓ'}
                is-contr (P pt)
                 x  P x
  B-elim-contr {P = P} c = connected∙-elim-prop {P = P} has-is-connected
    (is-contr→is-prop c) (c .centre)
```

<!--
```agda
  instance
    H-Level-B :  {n}  H-Level  B  (3 + n)
    H-Level-B = basic-instance 3 has-is-groupoid

open ConcreteGroup

instance
  Underlying-ConcreteGroup : Underlying (ConcreteGroup )
  Underlying-ConcreteGroup {} .Underlying.ℓ-underlying = 
  Underlying-ConcreteGroup .⌞_⌟ G =  B G 

ConcreteGroup-path : {G H : ConcreteGroup }  B G  B H  G  H
ConcreteGroup-path {G = G} {H} p = go prop! prop! where
  go : PathP  i  is-connected∙ (p i)) (G .has-is-connected) (H .has-is-connected)
      PathP  i  is-groupoid  p i ) (G .has-is-groupoid) (H .has-is-groupoid)
      G  H
  go c g i .B = p i
  go c g i .has-is-connected = c i
  go c g i .has-is-groupoid = g i
```
-->

The [[delooping]] of a group is a concrete group. In fact, we will prove later that
*all* concrete groups arise as deloopings.

```agda
Concrete :  {}  Group   ConcreteGroup 
Concrete G .B = Deloop∙ G
Concrete G .has-is-connected = Deloop-is-connected
Concrete G .has-is-groupoid = squash
```

Another important example of a concrete group is the [[circle]]: the delooping of
the [[integers]].

```agda
opaque
  S¹-is-connected : is-connected∙ S¹∙
  S¹-is-connected = S¹-elim (inc refl) prop!

S¹-concrete : ConcreteGroup lzero
S¹-concrete .B = S¹∙
S¹-concrete .has-is-connected = S¹-is-connected
S¹-concrete .has-is-groupoid = hlevel 3
```

## The category of concrete groups

The notion of group *homomorphism* between two groups $G$ and $H$ gets translated
to, on the "concrete" side, [[*pointed* maps]] $\B{G} \to^\bullet \B{H}$.

The pointedness condition ensures that these maps behave like abstract group
homomorphisms; in particular, that they form a *set*.

```agda
ConcreteGroups-Hom-set
  : (G : ConcreteGroup ) (H : ConcreteGroup ℓ')
   is-set (B G →∙ B H)
ConcreteGroups-Hom-set G H (f , ptf) (g , ptg) p q =
  Σ-set-square hlevel! (funext-square (B-elim-contr G square))
  where
    open ConcreteGroup H using (H-Level-B)
    square : is-contr ((λ j  p j .fst (pt G))   j  q j .fst (pt G)))
    square .centre i j = hcomp ( i   j) λ where
      k (k = i0)  pt H
      k (i = i0)  p j .snd (~ k)
      k (i = i1)  q j .snd (~ k)
      k (j = i0)  ptf (~ k)
      k (j = i1)  ptg (~ k)
    square .paths _ = H .has-is-groupoid _ _ _ _ _ _
```

These naturally assemble into a [[category]].

```agda
ConcreteGroups :    Precategory (lsuc ) 
ConcreteGroups  .Ob = ConcreteGroup 
ConcreteGroups _ .Hom G H = B G →∙ B H
ConcreteGroups _ .Hom-set = ConcreteGroups-Hom-set
```

<details>
<summary>
The rest of the categorical structure is inherited from pointed functions, and
univalence follows from the [[univalence]] of the universe of groupoids.
</summary>

```agda
ConcreteGroups _ .id = id∙
ConcreteGroups _ ._∘_ = _∘∙_
ConcreteGroups _ .idr f = Σ-pathp refl (∙-idl _)
ConcreteGroups _ .idl f = Σ-pathp refl (∙-idr _)
ConcreteGroups _ .assoc (f , ptf) (g , ptg) (h , pth) = Σ-pathp refl $
   ap f (ap g pth  ptg)   ptf   ≡⟨ ap! (ap-∙ f _ _) 
  (ap (f  g) pth  ap f ptg)  ptf ≡⟨ sym (∙-assoc _ _ _) 
  ap (f  g) pth  ap f ptg  ptf   

private
  iso→equiv :  {a b}  Isomorphism (ConcreteGroups ) a b   a    b 
  iso→equiv im = Iso→Equiv (im .to .fst ,
    iso (im .from .fst) (happly (ap fst (im .invl))) (happly (ap fst (im .invr))))

ConcreteGroups-is-category : is-category (ConcreteGroups )
ConcreteGroups-is-category .to-path im = ConcreteGroup-path $
  Σ-pathp (ua (iso→equiv im)) (path→ua-pathp _ (im .to .snd))
ConcreteGroups-is-category {} .to-path-over im = ≅-pathp (ConcreteGroups ) _ _ $
  Σ-pathp (funextP λ _  path→ua-pathp _ refl)
     i j  path→ua-pathp (iso→equiv im)  i  im .to .snd (i  j)) i)
```
</details>

## Concrete vs. abstract

Our goal is now to prove that concrete groups and abstract groups are equivalent,
in the sense that there is an [[equivalence of categories]] between `ConcreteGroups`{.Agda}
and `Groups`{.Agda}.

Since we're dealing with groupoids, we can use the alternative definition of
the fundamental group that avoids set truncations.

```agda
module _ (G : ConcreteGroup ) where
  open π₁Groupoid (B G) (G .has-is-groupoid)
    renaming (π₁ to π₁B; π₁≡π₀₊₁ to π₁B≡π₀₊₁)
    public
```

We define a [[functor]] from concrete groups to abstract groups.
The object mapping is given by taking the `fundamental group`{.Agda ident=π₁B}.
Given a pointed map $f : \B{G} \to^\bullet \B{H}$, we can `ap`{.Agda}ply it to a loop
on $\point{G}$ to get a loop on $f(\point{G})$; then, we use the fact that $f$
is pointed to get a loop on $\point{H}$ by [[conjugation]].

```agda
π₁F : Functor (ConcreteGroups ) (Groups )
π₁F .F₀ = π₁B
π₁F .F₁ (f , ptf) .hom x = conj ptf (ap f x)
```

By some simple path yoga, this preserves multiplication, and the construction is
functorial:

```agda
π₁F .F₁ (f , ptf) .preserves .pres-⋆ x y =
  conj ptf  ap f (x  y)              ≡⟨ ap! (ap-∙ f _ _) 
  conj ptf (ap f x  ap f y)            ≡⟨ conj-of-∙ _ _ _ 
  conj ptf (ap f x)  conj ptf (ap f y) 

π₁F .F-id = ext conj-refl
π₁F .F-∘ (f , ptf) (g , ptg) = ext λ x 
  conj (ap f ptg  ptf) (ap (f  g) x)        ≡˘⟨ conj-∙ _ _ _ 
  conj ptf  conj (ap f ptg) (ap (f  g) x)  ≡˘⟨ ap¡ (ap-conj f _ _) 
  conj ptf (ap f (conj ptg (ap g x)))         
```

We start by showing that `π₁F`{.Agda} is [[split essentially surjective]]. This is the
easy part: to build a concrete group out of an abstract group, we simply take its
`Deloop`{.Agda}ing, and use the fact that the fundamental group of the delooping
recovers the original group.

<!--
```agda
_ = Deloop
```
-->

```agda
π₁F-is-split-eso : is-split-eso (π₁F {})
π₁F-is-split-eso G .fst = Concrete G
π₁F-is-split-eso G .snd = path→iso (π₁B≡π₀₊₁ (Concrete G)  sym (G≡π₁B G))
```

We now tackle the hard part: to prove that `π₁F`{.Agda} is [[fully faithful]].
In order to show that the action on morphisms is an equivalence, we need a way
of "delooping" a group homomorphism $f : \pi_1(\B{G}) \to \pi_1(\B{H})$ into a
pointed map $\B{G} \to^\bullet \B{H}$.

```agda
module Deloop-Hom {G H : ConcreteGroup } (f : Groups  .Hom (π₁B G) (π₁B H)) where
  open ConcreteGroup H using (H-Level-B)
```

How can we build such a map? All we know about $\B{G}$ is that it is a pointed connected
groupoid, and thus that it comes with the elimination principle `B-elim-contr`{.Agda}.
This suggests that we need to define a type family $C : \B{G} \to \ty$ such that
$C(\point{G})$ is contractible, conclude that $\forall x. C(x)$ holds
and extract a map $\B{G} \to^\bullet \B{H}$ from that.
The following construction is adapted from [@Symmetry, §4.10]:

```agda
  record C (x :  G ) : Type  where
    constructor mk
    field
      y :  H 
      p : pt G  x  pt H  y
      f-p : (ω : pt G  pt G) (α : pt G  x)  p (ω  α)  f # ω  p α
```

Our family sends a point $x : \B{G}$ to a point $y : \B{H}$ with a function $p$ that
sends based paths ending at $x$ to based paths ending at $y$, with the additional
constraint that $p$ must "extend" $f$, in the sense that a loop on the left can be
factored out using $f$.

For the centre of contraction, we simply pick $p$ to be $f$, sending loops on
$\point{G}$ to loops on $\point{H}$.

```agda
  C-contr : is-contr (C (pt G))
  C-contr .centre .C.y = pt H
  C-contr .centre .C.p = f .hom
  C-contr .centre .C.f-p = f .preserves .pres-⋆
```

As it turns out, such a structure is entirely determined by the pair
$(y, p(\refl) : \point{H} \equiv y)$, which means it is contractible.

```agda
  C-contr .paths (mk y p f-p) i = mk (pt≡y i) (funextP f≡p i) (□≡□ i) where
    pt≡y : pt H  y
    pt≡y = p refl

    f≡p :  ω  Square refl (f # ω) (p ω) (p refl)
    f≡p ω = ∙-filler (f # ω) (p refl)  (sym (f-p ω refl)  ap p (∙-idr ω))

    □≡□ : PathP  i   ω α  f≡p (ω  α) i  f # ω  f≡p α i) (f .preserves .pres-⋆) f-p
    □≡□ = is-prop→pathp  i  hlevel 1) _ _
```

We can now apply the elimination principle and unpack our data:

```agda
  c :  x  C x
  c = B-elim-contr G C-contr

  g : B G →∙ B H
  p : {x :  G }  pt G  x  pt H  g .fst x

  g .fst x = c x .C.y
  g .snd = sym (p refl)

  p {x} = c x .C.p

  f-p : (ω : pt G  pt G) (α : pt G  pt G)  p (ω  α)  f # ω  p α
  f-p = c (pt G) .C.f-p
```

In order to show that this is a delooping of $f$ (i.e. that $\Pi_1(g) \equiv f$),
we need one more thing: that $p$ extends $g$ on the *right*. We get this essentially
for free, by path induction, because $p(α)$ ends at $g(x)$ by definition.

```agda
  p-g : (α : pt G  pt G) {x' :  G } (l : pt G  x')
       p (α  l)  p α  ap (g .fst) l
  p-g α = J  _ l  p (α  l)  p α  ap (g .fst) l)
    (ap p (∙-idr _)  sym (∙-idr _))
```

Since $g$ is pointed by $p(\refl)$, this lets us conclude that we have found a
right inverse to $\Pi_1$:

```agda
  f≡apg : (ω : pt G  pt G)  Square (p refl) (f # ω) (ap (g .fst) ω) (p refl)
  f≡apg ω = commutes→square $
    p refl  ap (g .fst) ω ≡˘⟨ p-g refl ω 
    p (refl  ω)           ≡˘⟨ ap p ∙-id-comm 
    p (ω  refl)           ≡⟨ f-p ω refl 
    f # ω  p refl         

  rinv : π₁F .F₁ {G} {H} g  f
  rinv = ext λ ω  pathp→conj (symP (f≡apg ω))
```

We are most of the way there. In order to get a proper equivalence, we must check that
delooping $\Pi_1(f)$ gives us back the same pointed map $f$.

We use the same trick, building upon what we've done before: start by defining
a family that asserts that $p_x$ agrees with $f$ *all the way*, not just on loops:

```agda
module Deloop-Hom-π₁F {G H : ConcreteGroup } (f : B G →∙ B H) where
  open Deloop-Hom {G = G} {H} (π₁F .F₁ {G} {H} f) public
  open ConcreteGroup H using (H-Level-B)

  C' :  x  Type _
  C' x = Σ (f .fst x  g .fst x) λ eq
        (α : pt G  x)  Square (f .snd) (ap (f .fst) α) (p α) eq
```

This is a [[property]], and $\point{G}$ has it:

```agda
  C'-contr : is-contr (C' (pt G))
  C'-contr .centre .fst = f .snd  sym (g .snd)
  C'-contr .centre .snd α = commutes→square $
    f .snd  p  α                                 ≡˘⟨ ap¡ (∙-idr _) 
    f .snd   p (α  refl)                        ≡⟨ ap! (f-p α refl) 
    f .snd  conj (f .snd) (ap (f .fst) α)  p refl ≡˘⟨ ∙-extendl (∙-swapl (sym (conj-defn _ _))) 
    ap (f .fst) α  f .snd  p refl                 
  C'-contr .paths (eq , eq-paths) = Σ-prop-path! $
    sym (∙-unique _ (transpose (eq-paths refl)))
```

Using the elimination principle again, we get enough information about `g` to conclude
that it is equal to `f`, so that we have a left inverse.

```agda
  c' :  x  C' x
  c' = B-elim-contr G C'-contr

  g≡f :  x  g .fst x  f .fst x
  g≡f x = sym (c' x .fst)
```

The homotopy `g≡f` is [[pointed]] by `definition`{.Agda ident=C'-contr}, but we
need to bend the path into a `Square`{.Agda}:

```agda
  β : g≡f (pt G)  sym (f .snd  sym (g .snd))
  β = ap (sym  fst) (sym (C'-contr .paths (c' (pt G))))

  ptg≡ptf : Square (g≡f (pt G)) (g .snd) (f .snd) refl
  ptg≡ptf i j = hcomp ( i   j) λ where
    k (k = i0)  ∙-filler (f .snd) (sym (g .snd)) (~ j) (~ i)
    k (i = i0)  g .snd j
    k (i = i1)  f .snd (j  k)
    k (j = i0)  β (~ k) i
    k (j = i1)  f .snd (~ i  k)

  linv : g  f
  linv = funext∙ g≡f ptg≡ptf
```

*Phew*. At last, `π₁F`{.Agda} is fully faithful.

```agda
π₁F-is-ff : is-fully-faithful (π₁F {})
π₁F-is-ff {} {G} {H} = is-iso→is-equiv $ iso
  (Deloop-Hom.g {G = G} {H})
  (Deloop-Hom.rinv {G = G} {H})
  (Deloop-Hom-π₁F.linv {G = G} {H})
```

We've shown that `π₁F`{.Agda} is fully faithful and essentially surjective;
this lets us conclude with the desired equivalence.

```agda
π₁F-is-equivalence : is-equivalence (π₁F {})
π₁F-is-equivalence = ff+split-eso→is-equivalence
   {G} {H}  π₁F-is-ff {_} {G} {H})
  π₁F-is-split-eso

π₁B-is-equiv : is-equiv (π₁B {})
π₁B-is-equiv = is-cat-equivalence→equiv-on-objects
  ConcreteGroups-is-category
  Groups-is-category
  π₁F-is-equivalence

module Concrete≃Abstract {} = Equiv (_ , π₁B-is-equiv {})
```