index

⚠️ This module is not part of this project and is only included for reference.
It is either part of the 1lab, the cubical library, or a built-in Agda module.

<!--
```
open import 1Lab.HLevel
open import 1Lab.Equiv
open import 1Lab.Path
open import 1Lab.Type
```
-->
```agda
module 1Lab.Type.Sigma where
```

<!--
```
private variable
   ℓ₁ : Level
  A A' X X' Y Y' Z Z' : Type 
  B P Q : A  Type 
```
-->

# Properties of Σ types

This module contains properties of $\Sigma$ types, not necessarily
organised in any way.

## Groupoid structure

The first thing we prove is that _paths in sigmas are sigmas of paths_.
The type signatures make it clearer:

```agda
Σ-pathp-iso : {A : I  Type } {B : (i : I)  A i  Type ℓ₁}
              {x : Σ (A i0) (B i0)} {y : Σ (A i1) (B i1)}
             Iso (Σ[ p  PathP A (x .fst) (y .fst) ]
                    (PathP  i  B i (p i)) (x .snd) (y .snd)))
                  (PathP  i  Σ (A i) (B i)) x y)

Σ-path-iso : {x y : Σ A B}
            Iso (Σ[ p  x .fst  y .fst ] (subst B p (x .snd)  y .snd))
                 (x  y)
```

The first of these, using a dependent path, is easy to prove directly,
because paths in cubical type theory _automatically_ inherit the
structure of their domain types. The second is a consequence of the
first, using the fact  that `PathPs and paths over a transport are the
same`{.Agda ident=PathP≡Path}.

```agda
fst Σ-pathp-iso (p , q) i = p i , q i
is-iso.inv (snd Σ-pathp-iso) p =  i  p i .fst) ,  i  p i .snd)
is-iso.rinv (snd Σ-pathp-iso) x = refl
is-iso.linv (snd Σ-pathp-iso) x = refl

Σ-path-iso {B = B} {x} {y} =
  transport  i  Iso (Σ[ p  x .fst  y .fst ]
                         (PathP≡Path  j  B (p j)) (x .snd) (y .snd) i))
                       (x  y))
            Σ-pathp-iso
```

## Closure under equivalences

Univalence automatically implies that every type former respects
equivalences. However, this theorem is limited to equivalences between
types _in the same universe_. Thus, we provide `Σ-ap-fst`{.Agda},
`Σ-ap-snd`{.Agda}, and `Σ-ap`{.Agda}, which allows one to perturb a
`Σ`{.Agda} by equivalences across levels:

```agda
Σ-ap-snd : ((x : A)  P x  Q x)  Σ A P  Σ A Q
Σ-ap-fst : (e : A  A')  Σ A (B  e .fst)  Σ A' B

Σ-ap : (e : A  A')  ((x : A)  P x  Q (e .fst x))  Σ A P  Σ A' Q
Σ-ap e e' = Σ-ap-snd e' ∙e Σ-ap-fst e
```

<details>
<summary> The proofs of these theorems are not very enlightening, but
they are included for completeness. </summary>

```agda
Σ-ap-snd {A = A} {P = P} {Q = Q} pointwise = Iso→Equiv morp where
  pwise : (x : A)  Iso (P x) (Q x)
  pwise x = _ , is-equiv→is-iso (pointwise x .snd)

  morp : Iso (Σ _ P) (Σ _ Q)
  fst morp (i , x) = i , pointwise i .fst x
  is-iso.inv (snd morp) (i , x) = i , pwise i .snd .is-iso.inv x
  is-iso.rinv (snd morp) (i , x) = ap₂ _,_ refl (pwise i .snd .is-iso.rinv _)
  is-iso.linv (snd morp) (i , x) = ap₂ _,_ refl (pwise i .snd .is-iso.linv _)

Σ-ap-fst {A = A} {A' = A'} {B = B} e = intro , isEqIntro
 where
  intro : Σ _ (B  e .fst)  Σ _ B
  intro (a , b) = e .fst a , b

  isEqIntro : is-equiv intro
  isEqIntro .is-eqv x = contr ctr isCtr where
    PB :  {x y}  x  y  B x  B y  Type _
    PB p = PathP  i  B (p i))

    open Σ x renaming (fst to a'; snd to b)
    open Σ (e .snd .is-eqv a' .is-contr.centre) renaming (fst to ctrA; snd to α)

    ctrB : B (e .fst ctrA)
    ctrB = subst B (sym α) b

    ctrP : PB α ctrB b
    ctrP i = coe1→i  i  B (α i)) i b

    ctr : fibre intro x
    ctr = (ctrA , ctrB) , Σ-pathp α ctrP

    isCtr :  y  ctr  y
    isCtr ((r , s) , p) = λ i  (a≡r i , b!≡s i) , Σ-pathp (α≡ρ i) (coh i) where
      open Σ (Σ-pathp-iso .snd .is-iso.inv p) renaming (fst to ρ; snd to σ)
      open Σ (Σ-pathp-iso .snd .is-iso.inv (e .snd .is-eqv a' .is-contr.paths (r , ρ))) renaming (fst to a≡r; snd to α≡ρ)

      b!≡s : PB (ap (e .fst) a≡r) ctrB s
      b!≡s i = comp  k  B (α≡ρ i (~ k))) ( i) λ where
        k (i = i0)  ctrP (~ k)
        k (i = i1)  σ (~ k)
        k (k = i0)  b

      coh : PathP  i  PB (α≡ρ i) (b!≡s i) b) ctrP σ
      coh i j = fill  k  B (α≡ρ i (~ k))) ( i) (~ j) λ where
        k (i = i0)  ctrP (~ k)
        k (i = i1)  σ (~ k)
        k (k = i0)  b

Σ-assoc :  { ℓ' ℓ''} {A : Type } {B : A  Type ℓ'} {C : (x : A)  B x  Type ℓ''}
         (Σ[ x  A ] Σ[ y  B x ] C x y)  (Σ[ x  Σ _ B ] (C (x .fst) (x .snd)))
Σ-assoc .fst (x , y , z) = (x , y) , z
Σ-assoc .snd .is-eqv y .centre = strict-fibres  { ((x , y) , z)  x , y , z}) y .fst
Σ-assoc .snd .is-eqv y .paths = strict-fibres  { ((x , y) , z)  x , y , z}) y .snd

Σ-Π-distrib :  { ℓ' ℓ''} {A : Type } {B : A  Type ℓ'} {C : (x : A)  B x  Type ℓ''}
             ((x : A)  Σ[ y  B x ] C x y)
             (Σ[ f  ((x : A)  B x) ] ((x : A)  C x (f x)))
Σ-Π-distrib .fst f =  x  f x .fst) , λ x  f x .snd
Σ-Π-distrib .snd .is-eqv y .centre = strict-fibres  f x  f .fst x , f .snd x) y .fst
Σ-Π-distrib .snd .is-eqv y .paths = strict-fibres  f x  f .fst x , f .snd x) y .snd
```
</details>


## Paths in subtypes

When `P` is a family of propositions, it is sound to regard `Σ[ x ∈ A ]
(P x)` as a _subtype_ of `A`. This is because identification in the
subtype is characterised uniquely by identification of the first
projections:

```agda
Σ-prop-path : {B : A  Type }
             (∀ x  is-prop (B x))
             {x y : Σ _ B}
             (x .fst  y .fst)  x  y
Σ-prop-path bp {x} {y} p i = p i , is-prop→pathp  i  bp (p i)) (x .snd) (y .snd) i
```

The proof that this is an equivalence uses a cubical argument, but the
gist of it is that since `B` is a family of propositions, it really
doesn't matter where we get our equality of `B`-s from - whether it was
from the input, or from `Σ≡Path`{.Agda}.

```agda
Σ-prop-path-is-equiv
  : {B : A  Type }
   (bp :  x  is-prop (B x))
   {x y : Σ _ B}
   is-equiv (Σ-prop-path bp {x} {y})
Σ-prop-path-is-equiv bp {x} {y} = is-iso→is-equiv isom where
  isom : is-iso _
  isom .is-iso.inv = ap fst
  isom .is-iso.linv p = refl
```

The `inverse`{.Agda ident=is-iso.inv} is the `action on paths`{.Agda
ident=ap} of the `first projection`{.Agda ident=fst}, which lets us
conclude `x .fst ≡ y .fst` from `x ≡ y`. This is a left inverse to
`Σ-prop-path`{.Agda} on the nose. For the other direction, we have the
aforementioned cubical argument:

```agda
  isom .is-iso.rinv p i j =
    p j .fst , is-prop→pathp  k  Path-is-hlevel 1 (bp (p k .fst))
                                      {x = Σ-prop-path bp {x} {y} (ap fst p) k .snd}
                                      {y = p k .snd})
                             refl refl j i
```

Since `Σ-prop-path`{.Agda} is an equivalence, this implies that its
inverse, `ap fst`{.Agda}, is also an equivalence; This is precisely what
it means for `fst`{.Agda} to be an [[embedding]].

There is also a convenient packaging of the previous two definitions
into an equivalence:

```agda
Σ-prop-path≃ : {B : A  Type }
              (∀ x  is-prop (B x))
              {x y : Σ _ B}
              (x .fst  y .fst)  (x  y)
Σ-prop-path≃ bp = Σ-prop-path bp , Σ-prop-path-is-equiv bp
```

<!--
```agda
Σ-prop-square
  :  { ℓ'} {A : Type } {B : A  Type ℓ'}
   {w x y z : Σ _ B}
   (∀ x  is-prop (B x))
   {p : x  w} {q : x  y} {s : w  z} {r : y  z}
   Square (ap fst p) (ap fst q) (ap fst s) (ap fst r)
   Square p q s r
Σ-prop-square Bprop sq i j .fst = sq i j
Σ-prop-square Bprop {p} {q} {s} {r} sq i j .snd =
  is-prop→squarep  i j  Bprop (sq i j))
    (ap snd p) (ap snd q) (ap snd s) (ap snd r) i j

Σ-set-square
  :  { ℓ'} {A : Type } {B : A  Type ℓ'}
   {w x y z : Σ _ B}
   (∀ x  is-set (B x))
   {p : x  w} {q : x  y} {s : w  z} {r : y  z}
   Square (ap fst p) (ap fst q) (ap fst s) (ap fst r)
   Square p q s r
Σ-set-square Bset sq i j .fst = sq i j
Σ-set-square Bset {p} {q} {s} {r} sq i j .snd =
  is-set→squarep  i j  Bset (sq i j))
    (ap snd p) (ap snd q) (ap snd s) (ap snd r) i j
```
-->

## Dependent sums of contractibles

If `B` is a family of contractible types, then `Σ B ≃ A`:

```agda
Σ-contract : {B : A  Type }  (∀ x  is-contr (B x))  Σ _ B  A
Σ-contract bcontr = Iso→Equiv the-iso where
  the-iso : Iso _ _
  the-iso .fst (a , b) = a
  the-iso .snd .is-iso.inv x = x , bcontr _ .centre
  the-iso .snd .is-iso.rinv x = refl
  the-iso .snd .is-iso.linv (a , b) i = a , bcontr a .paths b i
```

<!--
```agda
Σ-map
  : (f : A  A')
   ({x : A}  P x  Q (f x))  Σ _ P  Σ _ Q
Σ-map f g (x , y) = f x , g y

Σ-map₂ : ({x : A}  P x  Q x)  Σ _ P  Σ _ Q
Σ-map₂ f (x , y) = (x , f y)

×-map : (A  A')  (X  X')  A × X  A' × X'
×-map f g (x , y) = (f x , g y)

×-map₁ : (A  A')  A × X  A' × X
×-map₁ f = ×-map f id

×-map₂ : (X  X')  A × X  A × X'
×-map₂ f = ×-map id f
```
-->

<!--
```agda
_,ₚ_ = Σ-pathp
infixr 4 _,ₚ_

Σ-prop-pathp
  :  { ℓ'} {A : I  Type } {B :  i  A i  Type ℓ'}
   (∀ i x  is-prop (B i x))
   {x : Σ (A i0) (B i0)} {y : Σ (A i1) (B i1)}
   PathP A (x .fst) (y .fst)
   PathP  i  Σ (A i) (B i)) x y
Σ-prop-pathp bp {x} {y} p i =
  p i , is-prop→pathp  i  bp i (p i)) (x .snd) (y .snd) i

Σ-inj-set
  :  { ℓ'} {A : Type } {B : A  Type ℓ'} {x y z}
   is-set A
   Path (Σ A B) (x , y) (x , z)
   y  z
Σ-inj-set {B = B} {y = y} {z} aset path =
  subst  e  e  z) (ap  e  transport (ap B e) y) (aset _ _ _ _)  transport-refl y)
    (from-pathp (ap snd path))

Σ-swap₂
  :  { ℓ' ℓ''} {A : Type } {B : Type ℓ'} {C : A  B  Type ℓ''}
   (Σ[ x  A ] Σ[ y  B ] (C x y))  (Σ[ y  B ] Σ[ x  A ] (C x y))
Σ-swap₂ .fst (x , y , f) = y , x , f
Σ-swap₂ .snd .is-eqv y = contr (f .fst) (f .snd) where
  f = strict-fibres _ y
  -- agda can actually infer the inverse here, which is neat

×-swap
  :  { ℓ'} {A : Type } {B : Type ℓ'}
   (A × B)  (B × A)
×-swap .fst (x , y) = y , x
×-swap .snd .is-eqv y = contr (f .fst) (f .snd) where
  f = strict-fibres _ y

Σ-contr-eqv
  :  { ℓ'} {A : Type } {B : A  Type ℓ'}
   (c : is-contr A)
   (Σ A B)  B (c .centre)
Σ-contr-eqv {B = B} c .fst (_ , p) = subst B (sym (c .paths _)) p
Σ-contr-eqv {B = B} c .snd = is-iso→is-equiv λ where
  .is-iso.inv x  _ , x
  .is-iso.rinv x  ap  e  subst B e x) (is-contr→is-set c _ _ _ _)  transport-refl x
  .is-iso.linv x  Σ-path (c .paths _) (transport⁻transport (ap B (sym (c .paths (x .fst)))) (x .snd))
```
-->

<!--
```agda
module _ { ℓ' ℓ''} {X : Type } {Y : X  Type ℓ'} {Z : (x : X)  Y x  Type ℓ''} where
  curry : ((p : Σ X Y)  Z (p .fst) (p .snd))  (x : X)  (y : Y x)  Z x y
  curry f a b = f (a , b)

  uncurry : ((x : X)  (y : Y x)  Z x y)  (p : Σ X Y)  Z (p .fst) (p .snd)
  uncurry f (a , b) = f a b
```
-->