open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Path
open import Cubical.Foundations.Isomorphism renaming (Iso to _≃_)
open import Cubical.Foundations.Univalence
open import Cubical.Data.Unit renaming (Unit to ⊤)
open import Cubical.Data.Sigma
open import Cubical.Data.Int
open import Cubical.Relation.Nullary
data Interval : Type where
  l : Interval
  r : Interval
  seg : l ≡ r
Interval-isContr : isContr Interval
Interval-isContr = l , paths where
  paths : (x : Interval) → l ≡ x
  paths l = refl
  paths r = seg
  paths (seg i) j = seg (i ∧ j)
Interval-loops : (x : Interval) → x ≡ x
Interval-loops l = refl
Interval-loops r = refl
Interval-loops (seg i) j = seg i
data S¹ : Type where
  base : S¹
  loop : base ≡ base
S¹→⊤ : S¹ → ⊤
S¹→⊤ base = tt
S¹→⊤ (loop i) = tt
⊤→S¹ : ⊤ → S¹
⊤→S¹ tt = base
⊤→S¹→⊤ : (t : ⊤) → S¹→⊤ (⊤→S¹ t) ≡ t
⊤→S¹→⊤ tt = refl
always-loop : (x : S¹) → x ≡ x
always-loop base = loop
always-loop (loop i) j =
  hcomp (λ where k (i = i0) → loop (j ∨ ~ k)
                 k (i = i1) → loop (j ∧ k)
                 k (j = i0) → loop (i ∨ ~ k)
                 k (j = i1) → loop (i ∧ k))
        base
loop-induction : {ℓ : Level} {P : base ≡ base → Type ℓ}
               → (pprop : ∀ p → isProp (P p))
               → (prefl : P refl)
               → (ploop : ∀ p → P p → P (p ∙ loop))
               → (ppool : ∀ p → P p → P (p ∙ sym loop))
               → (p : base ≡ base) → P p
loop-induction {ℓ} {P} pprop prefl ploop ppool = J Q prefl
  where
    bridge : PathP (λ i → base ≡ loop i → Type ℓ) P P
    bridge = toPathP (funExt λ p → isoToPath
      (iso (λ x → subst P (compPathr-cancel _ _) (ploop _ x))
           (ppool p)
           (λ _ → pprop _ _ _)
           (λ _ → pprop _ _ _)))
    Q : (x : S¹) → base ≡ x → Type ℓ
    Q base p = P p
    Q (loop i) p = bridge i p
data Bool₁ : Type₁ where
  false true : Bool₁
S¹⋆ : Σ Type (λ A → A)
S¹⋆ = S¹ , base
flip : S¹ → S¹
flip base = base
flip (loop i) = loop (~ i)
flip≡ : S¹ ≡ S¹
flip≡ = isoToPath (iso flip flip inv inv) where
  inv : section flip flip
  inv base = refl
  inv (loop i) = refl
flip⋆ : S¹⋆ ≡ S¹⋆
flip⋆ i = flip≡ i , base≡base i where
  base≡base : PathP (λ i → flip≡ i) base base
  base≡base = ua-gluePath _ refl
Cover : S¹ → Type
Cover base = ℤ
Cover (loop i) = sucPathℤ i
S¹⋆-auto : (S¹⋆ ≡ S¹⋆) ≡ Bool₁
S¹⋆-auto = isoToPath (iso to from sec ret) where
  isPos : ℤ → Bool₁
  isPos (pos _) = true
  isPos _ = false
  to : S¹⋆ ≡ S¹⋆ → Bool₁
  to p = isPos (transport (λ i → Cover (loop' i)) 0) where
    loop' : base ≡ base
    loop' i = comp (λ j → p j .fst)
                   (λ where j (i = i0) → p j .snd
                            j (i = i1) → p j .snd)
                   (loop i)
  from : Bool₁ → S¹⋆ ≡ S¹⋆
  from false = flip⋆
  from true = refl
  sec : section to from
  sec false = refl
  sec true = refl
  ret : retract to from
  ret p = {!   !}
data D² : Type where
  base² : D²
  loop² : base² ≡ base²
  disk : refl ≡ loop²
D²-isContr : isContr D²
D²-isContr = base² , paths where
  paths : (x : D²) → base² ≡ x
  paths base² = refl
  paths (loop² i) j = disk j i
  paths (disk i j) k = disk (i ∧ k) j
D²-isProp : isProp D²
D²-isProp x y = sym (D²-isContr .snd x) ∙ D²-isContr .snd y
data coeq (X : Type) : Type where
  inc : X → coeq X
  eq : ∀ x → inc x ≡ inc x
lemma : ∀ X → coeq X ≃ (X × S¹)
lemma X = iso to from to-from from-to where
  to : coeq X → X × S¹
  to (inc x) = x , base
  to (eq x i) = x , loop i
  from : X × S¹ → coeq X
  from (x , base) = inc x
  from (x , loop i) = eq x i
  to-from : ∀ x → to (from x) ≡ x
  to-from (_ , base) = refl
  to-from (_ , loop i) = refl
  from-to : ∀ x → from (to x) ≡ x
  from-to (inc x) = refl
  from-to (eq x i) = refl