indexsource

module OneObjectMonoidalCategories where
Imports and misc. definitions.
open import Algebra.Group.Ab
open import Algebra.Group

open import Cat.Functor.Naturality.Reflection
open import Cat.Instances.Shape.Terminal
open import Cat.Instances.Delooping
open import Cat.Functor.Naturality
open import Cat.Monoidal.Functor
open import Cat.Monoidal.Base
open import Cat.Prelude hiding (_*_)

import Cat.Reasoning as Cat

open Lax-monoidal-functor-on
open Monoidal-category
open Functor
open is-iso
open _=>_

⊤ᵐ : Monoidal-category ⊤Cat
⊤ᵐ .-⊗- = !F
⊤ᵐ .Unit = _
⊤ᵐ .unitor-l = trivial-isoⁿ!
⊤ᵐ .unitor-r = trivial-isoⁿ!
⊤ᵐ .associator = trivial-isoⁿ!
⊤ᵐ .triangle = refl
⊤ᵐ .pentagon = refl

Given an abelian group GG, there is a unique strict monoidal category structure on the delooping BG\mathbf{B}G.

module _ {} (G : Abelian-group ) where
  open Abelian-group-on (G .snd)
  private BG = B (underlying-monoid .snd)

  BGᵐ : Monoidal-category BG
  BGᵐ .-⊗- .F₀ = _
  BGᵐ .-⊗- .F₁ = uncurry _*_
  BGᵐ .-⊗- .F-id = idl
  BGᵐ .-⊗- .F-∘ (a , b) (c , d) = extendr (extendl commutes)
  BGᵐ .Unit = _
  BGᵐ .unitor-l = iso→isoⁿ  _  Cat.id-iso _)  _  idr)
  BGᵐ .unitor-r = iso→isoⁿ  _  Cat.id-iso _)  _  idr ∙∙ idr ∙∙ sym idl)
  BGᵐ .associator = iso→isoⁿ  _  Cat.id-iso _)  _  idr  associative  sym idl)
  BGᵐ .triangle = idr
  BGᵐ .pentagon = elimr (elimr idl)

Monoidal functors BG\top \to \mathbf{B}G are in bijection with elements of GG (Cheng and Gurski 2007, theorem 3.1).

  !Constᵐ≃G : Lax-monoidal-functor-on ⊤ᵐ BGᵐ (!Const _)   G 
  !Constᵐ≃G .fst Fᵐ = Fᵐ .ε
  !Constᵐ≃G .snd = is-iso→is-equiv λ where
    .from g .ε  g
    .from g .F-mult .η _  g ⁻¹
    .from g .F-mult .is-natural _ _ _  elimr idl  sym idl
    .from g .F-α→  extendl id-comm-sym  ap (g ⁻¹ *_) associative
    .from g .F-λ←  idl  cancell inversel
    .from g .F-ρ←  idl  ap (g ⁻¹ *_) idl  inversel
    .rinv g  refl
    .linv Fᵐ  Lax-monoidal-functor-on-path _ _ refl $ ext λ _ 
      sym $ zero-diff $ ap (_ *_) (inv-inv  sym idr)  sym idl  Fᵐ .F-λ←

Cheng, Eugenia, and Nick Gurski. 2007. “The Periodic Table of n-Categories for Low Dimensions i: Degenerate Categories and Degenerate Bicategories.” https://arxiv.org/abs/0708.1178.