indexsource

open import 1Lab.Prelude
open import Data.Power

-- Lawvere's fixed point theorem and related results.
module Lawvere where

private variable
   : Level
  A B : Type 

module _ (f : A  A  B) (g : B  B) where
  δ : A  B
  δ a = g (f a a)

  lawvere-worker : fibre f δ  Σ[ b  B ] g b  b
  lawvere-worker (a , p) = f a a , sym (p $ₚ a)

module _ (f : A  A  B) (f-surj : is-surjective f) where
  lawvere : (g : B  B)  ∃[ b  B ] g b  b
  lawvere g = lawvere-worker f g <$> f-surj _

Curry : (A  (A  B))  B
Curry e = lawvere-worker (e .fst) id (equiv-centre e _) .fst

module _ (f : A   A) (f-surj : is-surjective f) where
  cantor : 
  cantor = ∥-∥-out! do
    A , fixed  lawvere f f-surj ¬Ω_
    pure (Curry (path→equiv (ap ⌞_⌟ (sym fixed))))