indexsource

open import 1Lab.Path.Reasoning
open import 1Lab.Prelude

open import Algebra.Monoid.Category
open import Algebra.Group

open import Data.List hiding (lookup)
open import Data.Fin
open import Data.Fin.Closure

open is-iso

{-
This is a formalisation of a hat puzzle whose statement you can read at any
of these places:

  https://www.jsoftware.com/pipermail/general/2007-June/030272.html
  https://www.cut-the-knot.org/blue/PuzzleWithHats.shtml
  https://twitter.com/gro_tsen/status/1618989823100096512

🎩 SPOILERS AHEAD! 🎩
-}
module Hats where

-- We assume there's at least one person, and that everyone has a unique
-- "name" between 0 and n - 1, known to everyone else.
module _ (n-1 : Nat) where
  private
    n = suc n-1
    Person = Fin n
    Hat = Fin n
    Hats = Person  Hat

  record Strategy : Type where
    -- `guess i xs` is the guess made by the ith person upon seeing the n - 1
    -- other hats given by `xs` (a vector of numbers from 0 to n - 1).
    field
      guess : Person  (Fin n-1  Hat)  Hat

    -- The relation `hats ✓ i` means that the ith person guesses correctly,
    -- given the assignment `hats`.
    _✓_ : Hats  Person  Type
    hats  i = guess i (delete hats i)  hats i

    -- We are interested in strategies where at least one person guesses
    -- correctly for every assignment of hats.
    field
      one-right :  hats  Σ Person λ i  hats  i

    -- First, note that, given this requirement, there can be at *most* one
    -- correct guess for every assignment of hats.
    -- This follows from a probabilistic argument: every person guesses correctly
    -- with probability 1/n, so the total number of correct guesses across all
    -- hat assignments is nⁿ.
    -- In order to conclude, we use the fact that any surjection between finite
    -- sets of equal cardinality is an equivalence.
    exactly-one-right :  hats  is-contr (Σ Person λ i  hats  i)
    exactly-one-right hats = Equiv→is-hlevel 0 (Fibre-equiv _ hats e⁻¹) (p-is-equiv .is-eqv hats)
      where
        probability :  i  Iso (Σ Hats (_✓ i)) (Fin n-1  Hat)
        probability i .fst (hats , _) = delete hats i
        probability i .snd .inv other .fst = other [ i  guess i other ]
        probability i .snd .inv other .snd =
          guess i  delete (other [ i  guess i other ]) i  ≡⟨ ap! (funext (delete-insert _ i _)) 
          guess i other                                      ≡˘⟨ insert-lookup _ i _ 
          (other [ i  guess i other ]) i                    
        probability i .snd .rinv _ = funext (delete-insert _ i _)
        probability i .snd .linv (hats , r) = Σ-prop-path! (funext (insert-delete _ i _ (sym r)))

        only-one : Σ Hats  hats  Σ Person (hats ✓_))  Hats
        only-one =
          Σ _  hats  Σ _ λ i  hats  i) ≃⟨ Σ-swap₂ 
          Σ _  i  Σ _ λ hats  hats  i) ≃⟨ Σ-ap-snd (Iso→Equiv  probability) 
          Fin n × (Fin n-1  Fin n)         ≃˘⟨ Fin-suc-Π 
          (Fin n  Fin n)                   ≃∎

        p : Σ Hats  hats  Σ Person (hats ✓_))  Hats
        p = fst
        p-is-equiv : is-equiv p
        p-is-equiv = Finite-surjection→equiv (inc only-one) p
          λ other  inc ((other , one-right other) , refl)

  open Strategy public

  -- n-hypercubes of order m. We won't use the extra degree of generality,
  -- but it doesn't hurt.
  Hypercube : Nat  Type
  Hypercube m = (Fin n  Fin m)  Fin m

  -- Latin hypercubes, or n-ary quasigroups.
  -- Every number appears exactly once on each "line"; equivalently,
  -- every partial application to n - 1 coordinates is an automorphism.
  is-latin :  {m}  Hypercube m  Type
  is-latin {m} h =  (i : Fin n) (xs : Fin n-1  Fin m)  is-equiv λ x  h (xs [ i  x ])

  Latin-hypercube : Nat  Type
  Latin-hypercube m = Σ (Hypercube m) is-latin

  -- Every latin n-hypercube h of order n induces a strategy where everyone
  -- guesses that the multiplication of all the hats is equal to their index.
  latin→strategy : Latin-hypercube n  Strategy
  latin→strategy (h , lat) .guess i other = equiv→inverse (lat i other) i
  latin→strategy (h , lat) .one-right hats =
    h hats , Equiv.from (eqv (h hats)) refl
    where
      module L i = Equiv (_ , lat i (delete hats i))
      eqv :  (i : Fin n)  (L.from i i  hats i)  (h hats  i)
      eqv i =
        L.from i i  hats i ≃⟨ Equiv.adjunct (L.inverse i) 
        i  L.to i (hats i) ≃⟨ sym-equiv 
        L.to i (hats i)  i ≃⟨ ∙-pre-equiv (sym (ap h (funext (insert-delete hats i _ refl)))) 
        h hats  i          ≃∎

  -- In particular, every group structure on Fin n induces a strategy since
  -- group multiplication is an n-ary equivalence.
  group→latin : Group-on (Fin n)  Latin-hypercube n
  group→latin G = mul , mul-equiv
    where
      open Group-on G hiding (magma-hlevel)

      mul :  {m}  (Fin m  Fin n)  Fin n
      mul xs = fold underlying-monoid (tabulate xs)

      mul-equiv :  {m} (i : Fin (suc m)) (xs : Fin m  Fin n)
                 is-equiv  x  mul (xs [ i  x ]))
      mul-equiv fzero xs = ⋆-equivr _
      mul-equiv {suc m} (fsuc i) xs = ∙-is-equiv (mul-equiv i (xs  fsuc)) (⋆-equivl _)

  group→strategy : Group-on (Fin n)  Strategy
  group→strategy = latin→strategy  group→latin