index

⚠️ This module is not part of this project and is only included for reference.
It is either part of the 1lab, the cubical library, or a built-in Agda module.

<!--
```agda
open import 1Lab.Prelude

open import Data.Nat.Properties
open import Data.Nat.Order
open import Data.Dec.Base
open import Data.Nat.Base
open import Data.Sum.Base
```
-->

```agda
module Data.Nat.Divisible where
```

# Divisibility {defines="divisibility"}

In the natural numbers, **divisibility**[^divide] is the property
expressing that a given number can be expressed as a multiple of
another, and we write $a | b$^[read "a divides b"] when there exists
some $k$ such that $b = ka$.

[^divide]: Not to be confused with a proper [division](Data.Nat.DivMod.html) algorithm.

Note the use of an existential quantifier, which is a bit annoying: For
divisibility to truly be a _property_, we must work under a truncation,
since otherwise there would be $\NN$-many proofs that $0 | 0$, since for
_any_ $n$, we have $0 = n0$. To avoid this sticky situation, we define
divisibility with a single step of indirection:

```agda
_∣_ : Nat  Nat  Type
zero   y = y  zero
suc x  y = fibre (_* suc x) y

infix 5 _∣_
```

In this way, we break the pathological case of $0 | 0$ by _decreeing_ it
to be the (contractible) type $0 = 0$. Every other natural number is
already handled, because the function "$(1 + x) *$" is injective. With
this indirection, we can prove that divisibility is a mere property:

```agda
∣-is-prop :  x y  is-prop (x  y)
∣-is-prop zero y n k = prop!
∣-is-prop (suc x) y (n , p) (n' , q) = Σ-prop-path! (*-suc-inj x n n' (p  sym q))

instance
  H-Level-∣ :  {x y} {n}  H-Level (x  y) (suc n)
  H-Level-∣ = prop-instance (∣-is-prop _ _)
```

The type $x | y$ is, in fact, the [[propositional truncation]] of $(*
x)^{-1}(y)$ --- and it is logically equivalent to that type, too!

```agda
∣-is-truncation :  {x y}  (x  y)   fibre (_* x) y 
∣-is-truncation {zero} {y} =
  prop-ext!
     p  inc (y , *-zeror y  sym p))
    (∥-∥-rec! (λ{ (x , p)  sym p  *-zeror x }))
∣-is-truncation {suc x} {y} = Equiv.to is-prop≃equiv∥-∥ (∣-is-prop (suc x) y)

∣→fibre :  {x y}  x  y  fibre (_* x) y
∣→fibre {zero} wit  = 0 , sym wit
∣→fibre {suc x} wit = wit

fibre→∣ :  {x y}  fibre (_* x) y  x  y
fibre→∣ f = Equiv.from ∣-is-truncation (inc f)

divides :  {x y} (q : Nat)  q * x  y  x  y
divides x p = fibre→∣ (x , p)
```

## As an ordering

The notion of divisibility equips the type $\NN$ with yet another
[[partial order]], i.e., the relation $x | y$ is reflexive, transitive,
and antisymmetric. We can establish the former two directly, but
antisymmetry will take a bit of working up to:

```agda
∣-refl :  {x}  x  x
∣-refl = divides 1 (*-onel _)

∣-trans :  {x y z}  x  y  y  z  x  z
∣-trans {zero} {zero} p q = q
∣-trans {zero} {suc y} p q = absurd (suc≠zero p)
∣-trans {suc x} {zero} p q = 0 , sym q
∣-trans {suc x} {suc y} {z} (k , p) (k' , q) = k' * k , (
  k' * k * suc x   ≡⟨ *-associative k' k (suc x) 
  k' * (k * suc x) ≡⟨ ap (k' *_) p 
  k' * suc y       ≡⟨ q 
  z                )
```

We note in passing that any number divides zero, and one divides every
number.

```agda
∣-zero :  {x}  x  0
∣-zero = divides 0 refl

∣-one :  {x}  1  x
∣-one {x} = divides x (*-oner x)
```

A more important lemma is that if $x$ divides a non-zero number $y$,
then $x \le y$: the divisors of any positive $y$ are smaller than it.
Zero is a sticking point here since, again, any number divides zero!

```agda
m∣sn→m≤sn :  {x y}  x  suc y  x  suc y
m∣sn→m≤sn {x} {y} p with ∣→fibre p
... | zero  , p = absurd (zero≠suc p)
... | suc k , p = difference→≤ (k * x) p
```

This will let us establish the antisymmetry we were looking for:

```agda
∣-antisym :  {x y}  x  y  y  x  x  y
∣-antisym {zero}  {y}     p q = sym p
∣-antisym {suc x} {zero}  p q = absurd (suc≠zero q)
∣-antisym {suc x} {suc y} p q = ≤-antisym (m∣sn→m≤sn p) (m∣sn→m≤sn q)
```

## Elementary properties

Since divisibility is the "is-multiple-of" relation, we would certainly
expect a number to divide its multiples. Fortunately, this is the case:

```agda
∣-*l :  {x y}  x  x * y
∣-*l {y = y} = fibre→∣ (y , *-commutative y _)

∣-*r :  {x y}  x  y * x
∣-*r {y = y} = fibre→∣ (y , refl)
```

If two numbers are multiples of $k$, then so is their sum.

```agda
∣-+ :  {k n m}  k  n  k  m  k  (n + m)
∣-+ {zero} {n} {m} p q = ap (_+ m) p  q
∣-+ {suc k} (x , p) (y , q) = x + y , *-distrib-+r x y (suc k)  ap₂ _+_ p q
```

## Even and odd numbers

A number is **even** if it is divisible by 2, and **odd** otherwise.
Note that a number is odd if and only if its successor is even; we take this
as our definition because it's easier to compute with positive statements.

```agda
is-even : Nat  Type
is-even n = 2  n

is-odd : Nat  Type
is-odd n = is-even (suc n)

odd→not-even :  n  is-odd n  ¬ is-even n
odd→not-even n (x , p) (y , q) = 1≠2*n (x - y) $
  monus-swapr 1 _ _ (ap suc q  sym p)  sym (monus-distribr x y 2)
  where
    1≠2*n :  n  ¬ (1  n * 2)
    1≠2*n zero = suc≠zero
    1≠2*n (suc n) h = zero≠suc (suc-inj h)
```

We can easily decide whether a number is even or odd by induction.

```agda
even-or-odd :  n  is-even n  is-odd n
even-or-odd zero = inl ∣-zero
even-or-odd (suc n) with even-or-odd n
... | inl p = inr (∣-+ ∣-refl p)
... | inr p = inl p

even? :  n  Dec (is-even n)
even? n with even-or-odd n
... | inl e = yes e
... | inr o = no (odd→not-even n o)
```

See [`Data.Nat.DivMod`] for a general decision procedure for divisibility.

[`Data.Nat.DivMod`]: Data.Nat.DivMod.html