indexsource

open import Cat.Prelude
open import Cat.Functor.Base
open import Cat.Functor.Compose
open import Cat.Functor.Constant
open import Cat.Functor.Equivalence.Path
open import Cat.Monoidal.Base
open import Cat.Monoidal.Diagram.Monoid
open import Cat.Instances.Product
open import Cat.Displayed.Base
open import Cat.Displayed.Total

open Monoidal-category
open Precategory
open Functor
open _=>_

-- ⚠️ WIP ⚠️
module PointwiseMonoidal
  {o o′  ℓ′} (C : Precategory o ) (D : Precategory o′ ℓ′)
  (M : Monoidal-category D)
  where

Pointwise : Monoidal-category Cat[ C , D ]
Pointwise = pw where
  prod : Functor (Cat[ C , D ] ×ᶜ Cat[ C , D ]) Cat[ C , D ]
  prod .F₀ (a , b) = M .-⊗- F∘ Cat⟨ a , b 
  prod .F₁ {x = x} {y = y} (na , nb) = M .-⊗-  nat where
    nat : Cat⟨ x .fst , x .snd  => Cat⟨ y .fst , y .snd 
    nat .η x = (na .η x) , (nb .η x)
    nat .is-natural x y f i = (na .is-natural x y f i) , (nb .is-natural x y f i)
  prod .F-id = ext λ _  M .-⊗- .F-id
  prod .F-∘ f g = ext λ _  M .-⊗- .F-∘ _ _
  pw : Monoidal-category Cat[ C , D ]
  pw .-⊗- = prod
  pw .Unit = Const (M .Unit)
  pw .unitor-l = {! M .unitor-l  !}
  pw .unitor-r = {!   !}
  pw .associator = {!   !}
  pw .triangle = {!   !}
  pw .pentagon = {!   !}

MonCD→CMonD : Functor ( Mon[ Pointwise ]) (Cat[ C ,  Mon[ M ] ])
MonCD→CMonD .F₀ (F , mon) .F₀ c = F .F₀ c , {!   !}
MonCD→CMonD .F₀ (F , mon) .F₁ = {!   !}
MonCD→CMonD .F₀ (F , mon) .F-id = {!   !}
MonCD→CMonD .F₀ (F , mon) .F-∘ = {!   !}
MonCD→CMonD .F₁ = {!   !}
MonCD→CMonD .F-id = {!   !}
MonCD→CMonD .F-∘ = {!   !}

MonCD≡CMonD :  Mon[ Pointwise ]  Cat[ C ,  Mon[ M ] ]
MonCD≡CMonD = Precategory-path MonCD→CMonD {!   !}